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Abstract

A numerical study of steady-state and transient 3-D Marangoni convection and heat transfer in electrostatically

levitated droplets. The analysis is based on the Galerkin finite element solution of the Navier–Stokes and energy

equations. Numerical aspects for the computation of surface driven flows in general curvilinear coordinate system are

discussed within the framework of finite elements and differential geometry. Results show that for practical micro-

gravity conditions under which the deformation is small, the single and double beam heating arrangements, when

placed at the poles or equator plane, produce an approximately axisymmetric flow profile and temperature distribution

with the axis of symmetry defined by the line passing through the centers of the laser beam and the droplet. Thus, an

axisymmetric model could provide a reasonably good description, and an exact one when the laser beam is placed at

a pole or one beam is placed at both poles. When a tetrahedral or octahedral heating arrangement is applied, complex

3-D flow structures occur, which result from interaction of flow motions associated with each laser beam. For the case

studied, the tetrahedral heating arrangement does not seem to produce a significant reduction in internal velocity, in

contrast to perception, but the temperature is more uniform. This phenomenon is explained by the fact that the 2- and

4-beam arrangements result in a surface temperature gradient of approximately the same magnitude. The six-beam

heating placement produces, however, a much more significant reduction in both velocity and temperature non-uni-

formity. The transient decaying during cooling is characterized by the evolution of both temperature and velocity fields

evolve in a rather complex fashion, with the initial stage dominated by the pronounced thermal and flow mixing on the

surface layer of a droplet. The strong surface mixing quickly brings out a surface temperature distribution of axi-

symmetry, while a 3-D structure still prevails inside until much later. The flow reversal is also observed in the droplets

that have been heated by 4- or 6-beam lasers during the decay, and there is a spike in velocity and temperature at the

time when the flow reversal occurs.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Electrostatically levitated droplets are widely used for

the fundamental study of melt flows during solidification

and for the measurement of thermophysical properties

of high melting point, highly corrosive materials in

microgravity. In an electrostatic levitator, droplets are

suspended by the Coulomb forces that are generated by

the interaction of charges impressed on the droplets and
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a static electric field surrounding them. Lord Rayleigh

[1], through asymptotic analysis, showed that there ex-

ists a threshold value of charges applied to the droplets

before they become disintegrated [1]. This threshold

limits the size of a droplet that can be levitated in normal

gravity condition. In microgravity environment, how-

ever, the Coulomb forces are mainly derived from in-

duced charges and the applied electric field and are to

confine a liquid droplet at a desired location. This allows

a liquid sample of large size to be positioned, which is

important for measuring certain physical properties

such as interdiffusion coefficients in undercooled binary

alloys.
ed.
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Nomenclature

a radius of a sphere

C geometric coefficient resulting from bound-

ary integral formulation

Cp heat capacity

E0 electric field

EðjÞ elliptical integral of the second kind

F force vector from numerical formulation

G Green’s function for free space

G, H global coefficient matrices of BE formula-

tion

H Gaussian mean curvature

î unit vector of ith component

k thermal conductivity

KðjÞ elliptical integral of the first kind

Ma Marangoni number, Ma ¼ ðoc=oT ÞðTmin �
TmaxÞqCpad=lk

nðnr; nzÞ outward normal, its r and z components

Q net charge on the droplet

Qc critical charge

Q0 laser beam heat flux constant

r, r̂, r point vector, unit vector, and r-coordinate
R distance measured from the center of the un-

formed droplet

t tangential vector

T , T1, Tr temperature, temperature of surround-

ings, reference temperature

Tmax, Tmin maximum and minimum temperatures

DT difference between Tmax and Tmin

Umax maximum velocity

u velocity

ẑ unit vector of z-direction

z z-coordinate
zc center of mass along the z-axis

Greek symbols

b thermal expansion coefficient

e0 permittivity of free surface or region desig-

nated by X2

e emissivity

r gradient operator

/ shape function

U electric potential

c surface tension

j geometric parameter for elliptical functions

g molecular viscosity

q density

h h-direction
r electrical conductivity

re surface charge distribution

rs Stefan–Boltzmann constant

�r stress tensor

X computational domain

Subscripts

d droplet

i the ith point

l laser beam

1 region inside the droplet

2 region outside the droplet

Superscripts

i the ith component

T matrix transpose
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One major advantage of electrostatic levitation is

that in principle it can be applied to a very wide range of

materials including metals, insulators and semiconduc-

tors. This is in sharp contrast with the widely used

electromagnetic levitation process, developed on the

basis of the Faraday’s induction principle, which applies

only to electrically conducting samples. A more detailed

comparison of these two techniques as applied to levi-

tate solid/liquid samples is discussed in a recent publi-

cation [10].

In planning space experiments with electrostatically

levitated droplets, information on the free surface defor-

mation and transport phenomena such as fluid flow and

heat and mass transfer is required. Unlike the electro-

magnetic levitation systems where strong stirring in a

droplet occurs as a result of induced Lorentz forces,

electrostatic forces do not produce an internal force in

droplets that are electrically conducting such as metals

and semiconductor melts. In such a conducting droplet

positioned in an electrostatic field, internal flow comes
from other sources, among which the surface tension

driven flow plays a dominant role. There are both

advantages and disadvantages associated with internal

flows. In some respects, an internal flow pollutes the

measurements of surface tension and viscosity and needs

to be suppressed or eliminated as far as the thermophys-

ical propertymeasurement is concerned. In other respects,

a strong internal flow may be useful in obtaining certain

types of microstructures of materials that solidify under a

deep undercooling condition [8]. One technique widely

used in microgravity for determining surface tension is to

measure the frequency of the free surface oscillation of a

free droplet. A free surface oscillation is made possible by

first deforming the droplet by an external force and sub-

sequently releasing the force [9]. The surface of a droplet

may also bemade oscillate bymodulating the potentials in

the electrodes until the resonant frequency is achieved [8].

Study of the behavior of an electrically charged

droplet has been a subject of long history and new and

emerging applications with the droplet have provided



Fig. 1. Schematic representation of a positively charged melt

droplet levitated in an electrostatic field: (a) levitation mecha-

nism and (b) a 2-laser-beam heating arrangement.
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continuous thrusts for the research community. Analyses

have been carried out on either an inviscid oscillation of

charged droplets for simple electric field configuration

and shape stability [3–5] or Marangoni convection in the

limit of Stokes flow for a sample of a perfect sphericity

[7]. Recently, 2-D axisymmetric numerical models have

also been developed for Marangoni flows in deformed

droplets in electric fields [12]. Droplet experiments indi-

cate that droplet deformation is approximately axisym-

metric under a stable levitation condition. While

axisymmetric flow models may be useful for axisym-

metric laser heating, in reality various non-axisymmetric

laser-heating arrangements are also applied, which in-

clude single beam, dual beam, and multiple beam heating

configurations. These heating arrangements undoubt-

edly will produce a complex 3-D flow structure that goes

far beyond a description by any existing 2-D models. To

the best knowledge of the authors, it seems to have very

few studies, if any at all, on the 3-D surface tension

driven flows in an electrostatically levitated droplet.

This paper presents a 3-D numerical model for Ma-

rangoni convection and thermal phenomena associated

with an electrostatically positioned droplet in micro-

gravity. The motivation for the work is derived from the

need to develop a fundamental understanding of ther-

mal and internal fluid flow fields in these levitated

droplets. The free surface deformation is calculated

using the hybrid finite/boundary element model pub-

lished previously [13]. The temperature distribution and

fluid flow field in the droplets are calculated using the

finite element method. Formulation of surface tension

driven flows on a curvilinear surface within the frame-

work of finite elements and differential geometry is dis-

cussed. A 3-D finite element simulation of droplet flows

represents a computationally intensive task, even with

various symmetry (not necessarily axisymmetry) condi-

tions applied to reduce the mesh size for the simulation.

To expedite the 3-D computations, the global finite

element matrix is sectioned and a special LU solver is

designed to account for the changed structure of matrix.

Calculations are performed to study both the steady-

state and transient evolution of thermal and fluid flow

fields in the electrostatically positioned droplets as a

function of various commonly used or envisioned laser

heating arrangements. The 3-D finite element model, in

complement with the 2-D models reported early [13],

should be a useful toolkit for developing electrostatic

levitation systems for space applications as well as for

planning relevant experiments in space shuttle flights or

in the International Space Station under construction.
2. Problem statement

Let us consider the problem as illustrated in Fig. 1.

An electrically conducting liquid droplet is immersed in
a uniform electrostatic field, which is generated by

placing two electrodes far apart (Fig. 1(a)). By the

principle of electrostatics, a constant potential is estab-

lished on the surface of the droplet, and surface electric

charges are induced so that the electric field inside the

droplet is zero. The charge distribution is non-uniform

along the surface and, when combined with a self-

induced electric field local to the charges, results in a

non-uniform electric surface force acting in the outnor-

mal direction [2]. This normal force combines with other

surface forces to define the equilibrium shape of the

droplet. The internal and tangential surface Maxwell

stresses are both zero because the electric potential is

constant everywhere inside the droplet by the Gauss law

and thus there will be no convection resulting from the

electric origin. Laser beams are applied to melt the

sample and/or heat it up to a designated temperature.

Fig. 1(b) shows a heating arrangement with two laser

beams directed at two poles. Various other laser beam

arrangements are also considered in this study, including

single beam, dual beam, tetrahedral and hexahedral

beams. The heating will result in a non-uniform tem-

perature distribution inside the droplet and cause con-

vection if the surface tension of the liquid varies with the

surface temperature, as for most metallic and semicon-

ductor melts. Since the laser heating applied here is not

necessarily axisymmetric, the surface tension driven

flows are bound to be three-dimensional. As shown

later, very complex 3-D flow structures and temperature

distributions are developed in a droplet for some heating

conditions. One important objective of this paper is to

develop an understanding of these complex transport

phenomena under both steady and transient conditions,

which each have specific applications for space materials

processing and thermophysical property measurements.
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A complete description of the electrically induced

surface deformation and thermally induced fluid flow

phenomena in a droplet requires the solution of the

coupled Maxwell and Navier–Stokes equations, along

with the energy balance equation. However, for metal

and semiconductor melts, the electric Reynolds number,

ðe0=rÞVmax=a, is on an order of 10�16, which suggests that

the convective transport of surface charges (or electric

field) may be neglected and the electric field distribution

can be calculated as if the liquid droplet were solid [6].

With this, the Maxwell equation is simplified to a partial

differential equation governing the distribution of the

electric field outside the droplet. The buoyancy effects

being neglected for microgravity applications, the

equations for the electric, fluid flow and thermal fields

may be written as follows:

r2U ¼ 0 2 X2 ð1Þ

r � u ¼ 0 2 X1 ð2Þ

q
ou

ot
þ qu � ru ¼ �rp þr � gðruþ ðruÞTÞ 2 X1

ð3Þ

qCp
oT
ot

þ qCpu � rT ¼ r � krT 2 X1 ð4Þ

The solution of above electric field, fluid flow and heat

transfer equations may be obtained by applying the

appropriate boundary conditions, which are stated

below,

U ¼ U0 2 X1 \ X2 ð5Þ

e0n � rU ¼ �re 2 X1 \ X2 ð6Þ

toX1
re ds ¼ �toX1

e0n � rUds ¼ Q 2 X1 \ X2 ð7Þ

U ¼ �E0R cos h R ! 1 ð8Þ

�kn � rT ¼ ersðT 4 � T 4
1Þ þ n � r̂lQ0e

�r2
l
=a2

l 2 X1 \ X2

ð9Þ

u � n ¼ 0 2 X1 \ X2 ð10Þ

n � �r � nþ K � n � TE � n ¼ 2Hc 2 X1 \ X2 ð11Þ

t � �r � n ¼ dc
dT

t � rT 2 X1 \ X2 ð12Þ
Z

X1

dV ¼ V0 2 X1 ð13Þ

Z
X1

zdV ¼ zc 2 X1 ð14Þ

In the above, Eq. (6) is the jump condition for the

electric field along the droplet surface, a manifestation of

a well known fact that charges are distributed only on

the surface of a conducting body. Eq. (8) describes the

electric potential condition at infinity. The law of charge
conservation is described by Eq. (7), where Q is the total

free charge applied on the droplet, which is zero for the

problem under consideration for microgravity applica-

tions. In Eq. (9), the absorption coefficient is factored

into Q0 and r̂l the unit vector of laser beam pointing

outward from the origin of the laser, i.e., n � r̂l 6 0. Eq.

(11) describes the balance of the hydrodynamic, Max-

well and surface tension stresses along the normal

direction, which determines the shape of the droplet.

The last equation represents the fact that the flow along

the surface of the droplet is induced by surface tension

force if it is a function of temperature. The constraints of

the volume conservation (Eq. (13)) and the center of the

mass (Eq. (14)) of the electrostatically levitated droplet

are needed to determine the shape and position of the

droplet.

It is noted that in the above formulations, the effect

of surrounding gas is neglected. The liquid droplet is

generally processed under a high vacuum condition, al-

though recently attempts have been made to process in

an inert gas environment. For the latter case, it is esti-

mated that the surrounding inert gas contributes about

3% or less to the Marangoni convection.
3. Droplet deformation calculations

In most applications, the droplet deformation is

approximately axisymmetric when levitation is stabi-

lized, and thus a 2-D (axisymmetric) model is sufficient

to predict the free surface deformation. The compu-

tational procedures for electrically induced droplet

deformation are detailed in earlier publications [12,13]

and thus only a brief summary is outlined here. In es-

sence, the droplet deformation is predicted by a hybrid

boundary/finite element method. The numerical model

entails the use of boundary elements for electrical po-

tential calculations, while the finite elements are used for

free surface deformation calculations. As the free surface

shapes are not known a priori, an iterative procedure is

required. In principle all discretized equations can be

grouped to form a large global sparse matrix equation,

which is then solved simultaneously to obtain the electric

potential and the free surface shapes. Early numerical

simulations showed that under normal conditions con-

sidered for both normal and microgravity applications,

the droplet deformation is primarily attributed to the

Maxwell stress and the viscous stresses due to flow field

contributes insignificantly, often less than about 1% [12].

Thus, the flow effect is neglected in the present study.
4. Thermal and fluid flow calculations

With the droplet shape known, the transport equa-

tions (Eqs. (2)–(4)) for the thermal and fluid flow fields
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Fig. 2. Transformation between local curvilinear and global

Cartesian coordinate systems.
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along with the boundary conditions are solved using the

Galerkin finite element method. The matrix form of the

finite element discretized equations for the 3-D model

may be written as follows,

M 0 0
0 0 0

0 0 NT

2
4

3
5 _U

_P
_T

2
4

3
5

þ
AðUÞ þ K �C B

�CT 0 0

0 0 DT ðUÞ þ LT

2
4

3
5 U

P

T

2
4

3
5

¼
F

0

GT

2
4

3
5 ð15Þ

The coefficient matrices above are defined by

Mp ¼
Z

X1

wwT dV ; NT ¼
Z

X1

qCphhT dV

M ¼
Z

X1

//T dV ; Cj ¼
Z

X1

ĵ � r/wT dV

LT ¼
Z

X1

krh � rhT dV ; AðUÞ ¼
Z

X1

q/u � r/T dV

DT ðUÞ ¼
Z

X1

qCphu � rhT dV ; B ¼
Z
oX1

oc
oT

t � rhT dS

GT ¼ �
Z
oX1

qThds; F ¼
Z
oX1

/s � nds

Kij ¼
Z

X1

gr/ � r/T dV
� �

dij þ
Z

X1

gð̂i � r/Þð̂j � r/TÞdV

where j ¼ 1, 2, 3. Note also that matrix B represents the

surface tension effects on the fluid motion. The assem-

bled global matrix equations are stored in the skyline

form and solved using the Gaussian elimination method.

For the transient calculations, the implicit time scheme

is used. The transient term is set to zero for steady-state

calculations, however.
5. Computational aspects

Modeling of 3-D surface tension driven flows on a

curvilinear surface within the framework of finite ele-

ments requires some tedious geometric treatment that

involves differential geometry operations and rotation of

matrix in local coordinates at the surface for the purpose

of appropriately imposing velocity and surface stress

boundary conditions (Eqs. (10) and 12). While treatment

may vary depending on specific problems, our approach

to model the surface driven flow makes use of local

surface coordinates and of sharp edges with specified

local coordinate system as well as consistent surface

normals. With reference to Fig. 2, a local coordinate

system ðg; f; nÞ is defined at a point on the surface. Note
that during calculations this local system may be (al-

though not required) chosen conveniently such that they

are coincident with the normalized coordinate systems

for isoparametric calculations at the element level. The

xyz- and gfn-coordinate systems are related by the fol-

lowing coordinate transformation,

o

og
o

of
o

on

0
BBBBBB@

1
CCCCCCA

¼ ½J 


o

ox
o

oy
o

oz

0
BBBBBB@

1
CCCCCCA

¼
x;g y;g z;g
x;f y;f z;f
x;n y;n z;n

2
64

3
75

o

ox
o

oy
o

oz

0
BBBBBB@

1
CCCCCCA

ð16Þ

In constructing the Jacobian matrix, use has been made

of the following differential geometry relations,

r1 ¼ x;ĝiþ y;gĵþ z;gk̂; r2 ¼ x;f̂iþ y;fĵþ z;fk̂

rn ¼ r1 � r2 ¼ x;n̂iþ y;nĵþ z;nk̂

¼ ðy;gz;f � z;gy;fÞ̂i� ðx;gz;f � z;gx;fÞ̂jþ ðx;gy;f � y;gx;fÞk̂

The Jacobian matrix may be inverted analytically with

the follow result,

½J 
�1

¼ 1

jJ j

y;fz;n � z;fy;n �ðy;gz;n � z;gy;nÞ y;gz;f � z;gy;f
�ðx;fz;n � z;fx;nÞ x;gz;n � z;gx;n x;gz;f � z;gx;f
x;fy;n � y;fx;n �ðx;gy;n � y;gx;nÞ x;gy;f � y;gx;f

2
64

3
75

ð17Þ

Furthermore, a shape (or any) function f ðg; fÞ defined

over the surface is a function of ðg; fÞ only and hence

of ðg; fÞ=on ¼ 0. With these relations, one may then re-

late the volume differential operator to the surface

operator,
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o

ox
o

oy
o

oz

0
BBBBBB@

1
CCCCCCA

¼ ½J 
�1

o

og
o

of
o

on

0
BBBBBB@

1
CCCCCCA

ð18Þ

which may be written in the terminology of differential

geometry [14],

r ¼ o

ox
îþ o

ox
ĵþ o

ox
k̂

¼ 1

H 2
r1 G

o

og

�
� F

o

of

�
þ 1

H 2
r1 E

o

of

�
� F

o

og

�
ð19Þ

with E ¼ r21 ¼ x2;g þ y2
;g þ z2;g, G ¼ r22 ¼ x2;f þ y2

;f þ z2;f, F ¼
r1 � r2 ¼ x;gx;f þ y;gy;f þ z;gz;f and H 2 ¼ EG� F 2. It is

stressed that in Eq. (19), ðf; gÞ is not necessarily

orthogonal so long as they are not collinear. This is

important in that irregular quadrilateral surface ele-

ments can be readily handled in 3-D finite element cal-

culations presented here.

To perform the calculations, the consistent normal of

the surface at node i is required, which must satisfy the

continuity equation [15],

ni
x ¼

1

ni

Z
X1

o/i

ox
dV ; ni

y ¼
1

ni

Z
X1

o/i

oy
dV ;

ni
z ¼

1

ni

Z
X1

o/i

oz
dV ð20Þ

where

ni ¼
Z

X1

o/i

ox
dV

� �2
"

þ
Z

X1

o/i

oy
dV

� �2

þ
Z

X1

o/i

oz

� �2
#

Note that the integration is carried over all the elements

sharing node i. Once the normal is known, the two

tangential directions t1 ¼ ðt1x ; t1y ; t1z Þ and t2 ¼ ðt2x ; t2y ; t2z Þ
can be easily calculated using the cross-product rela-

tions, t1 ¼ b� n, which b is an arbitrary space vector

such that b� n 6¼ 0, and t2 ¼ n� b. This ensures that

the local coordinate system defined by t1 � t2 � n forms

an orthogonal triplet at any node (e.g. node i), a strict

condition different from that imposed on ðg; f; nÞ. The

velocities defined in the t1 � t2 � n system is now related

to those in the xyz system through the following trans-

formation,

Ut2

Ut1

Un

0
@

1
A ¼

t1x t1y t1z
t2x t2y t2z
nx ny nz

2
4

3
5 Ux

Uy

Uz

0
@

1
A ð21Þ

Note that the above transformation also applies to force

vectors.

To calculate the surface tension contributions, the

integration of r term is first calculated using the relation

(Eq. (19)), followed by the above relation to transform
the velocities defined in the xyz-coordinates to those in

the t1 � t2 � n system. For the flows under consider-

ation, the normal component of the velocity is zero and

the condition can be imposed after the transformation.

On the sharp edges formed by the intersection of two

surfaces, however, the t1 � t2 � n system is not uniquely

defined by the above computational procedure. This

causes difficulty when appropriate velocity and stress

boundary conditions are specified along the edge. To

overcome the problem, the normal of the edge is taken

to be that associated with one of the two joining surfaces

and an additional constraint is imposed such that the t1
is along the edge.

The above treatment in general will give rise to the

submatrix B, which, when assembled following standard

procedure [12], results in a significant number of unfills

in the final global finite element matrix. These unfills

may be occupied during LU decomposition and there-

fore drastically slow down the computations [16]. To

reduce these unfills associated with 3-D Marangoni flow

computations, the finite element matrix is desectioned

such that the terms associated with B matrix is moved to

the right-hand side. As such the matrix DT þ ALðUÞ may

be solved independent of the matrix describing the flow

and velocity. Further, making use of the penalty for-

mulation to treat the pressure term eliminates the pres-

sure field. This re-shuffling of the final global matrix

elements and unknowns results in savings in both stor-

age space and CPU time required for simulations.

Numerical tests show that approximately a factor of 2 to

4 savings in computational time is achieved in the

present study, depending on the number of finite ele-

ments used.
6. Results and discussion

The computational models described above may be

employed to predict the electric field distribution, elec-

tric pressure distribution along the surface of a droplet,

droplet shapes, transient full-3-D temperature distribu-

tion and internal convection in the droplets driven by

surface tension force. Extensive numerical simulations

have been carried out for various heating conditions. A

selection of computed results is given below. The ther-

mophysical properties used for calculations are tabu-

lated in Table 1. The criterion for the convergence of

non-linear iteration is set to 1 · 10�4 (norm-2 relative

error).

6.1. Mesh selection and mesh independency test

The mesh independence testing procedure for droplet

deformation calculations has been discussed in previous

publication [11,12] and thus omitted here. Numerical

tests show a total of 48 linear boundary elements were



Table 1

Parameters used in calculations

Parameters Values

Tmelt (K) 1940

Q0 (W/m2) 1.3· 106

ad (mm) 2.5

q (kg/m3) 4110

l (kg/m s) 5.2· 10�3

c (N/m) 0.864

dc=dT (N/mK) )2.6 · 10�4

K (W/mK) 21.6

CP (J/kgK) 700

E (V/m) 3.3· 106

Emissivity e0 0.3

b (K�1) 6.5· 10�6

Pr 1.685· 10�1

al (mm) 2.05

Fig. 3. Finite element meshes for 3-D computations.
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Fig. 4. Comparison of free surface profiles of an electrically

conducting droplet in normal and microgravity: (1) E0 ¼ 3:3�
106 V/m and Q ¼ 0 C, and (2) un-deformed liquid sphere.
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adequate for the electric field calculations and 24 qua-

dratic boundary elements for the computation of free

surface deformations. The thermal and fluid flow cal-

culations used 8-node hexahedral elements. Special

treatment is made to generate the hexahedral elements

neat the pole. Mesh independence tests for flow and

thermal simulations were conducted such that the

numerical error in two consecutive mesh refinements is

smaller than 0.1% in maximum velocities calculated.

From these tests, a mesh of 2900 8-node elements was

used for an octant model for the results presented below,

which is used to simulate 2- and 4-laser beams, while

that of 3680 8-node elements for a one-third model, to

take advantage of symmetry associated with the heating

arrangement. Other meshes were also used and tested

for mesh independence for other laser heating condi-

tions. Some typical meshes used for 3-D thermal and

fluid flow calculations are shown in Fig. 3. Meshes for

droplet deformation and 2-D models were given in

previous publications [11–13].

6.2. Droplet deformation

For a majority of microgravity experiments, the

droplet deformation is determined primarily by the

balance of the surface tension and electric stresses long

the surface, and the contribution of the hydrodynamic

and viscous stresses is negligible, typically on the order

of 1% [12,13]. Thus, for these cases, the computation of

the droplet deformation can be decoupled from the fluid

flow calculations. Also, experiments show that under

normal conditions considered for space applications, the

droplet deformation is axisymmetric.

In microgravity, the electric forces are designed to

position the droplet in a designated location. As a net

lifting force is not needed, the total net charge is equal to

zero. However, as the droplet is placed in the electric

field, the perturbed field induces surface charges on the
droplet. These induced surface charges interact with the

imposed electric field to ensure that the electric field

inside the droplet is zero and that the entire droplet is

kept at a constant potential. While the net force is zero,

the local electric force along the surface is not, which

must be balanced by the surface tension force, thereby

defining the free surface profile for the droplet. Fig. 4

shows the result of surface deformation obtained from

the hybrid finite/boundary model. Because the surface

charges are negative on the lower half surface and po-

sitive on the upper half surface, they combine with an

upward electric field to produce a force that pulls the

surface outward from the center. Moreover, the surface

charges are symmetrically distributed due to the sym-

metry of the applied electric field, which causes the

droplet to deform symmetrically. To satisfy the mass

conservation, the droplet is squeezed at the equator,

resulting in the shape as shown.



Fig. 5. Temperature distribution and internal fluid flow in an

electrostatically deformed droplet under microgravity with a

single beam heating laser: (a, b) for single beam placed at the

north pole––U max ¼ 14:64 cm/s and (c–d) for single beam

placed at the equator––U max ¼ 14:43 cm/s. Heat flux Q0 ¼
2:6� 106 W/m2.
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It is noteworthy that an electrostatic field in general

produces a potential apex that is intrinsically unstable

for the purpose of levitation. As a result, delicate dy-

namic control system is required to make the levitation

operation feasible. This is in contrast with induction

principle, which produces a potential wall for intrinsi-

cally stable electromagnetic levitation.

6.3. Steady-state fluid flow and temperature distribution

As stated before, the only non-zero Maxwell stress

component on an electrically conducting droplet is

normal to the droplet surface in the natural coordinate,

which contributes to droplet deformation only. There-

fore, the fluid flow in the droplet is caused by the surface

tension variation along the surface only, which in turn

stems from a non-uniform temperature distribution

created by laser heating. While any types of heating

arrangements can be simulated with the numerical

model described above, we consider below four different

types that are either used in practice or being considered

for use in the near future. These heating arrangements

give rise to a complex 3-D flow structure, except an

axisymmetric placement of heating lasers.

6.3.1. One laser beam on a pole or equator

Early practice of heating the sample in an electro-

static levitator is to apply one laser beam at either the

equator or one of the poles. When the laser beam is

directed at the pole, the flow field and temperature dis-

tribution are axisymmetric and thus a 2-D model is

sufficient to describe the transport phenomena. This 2-D

model was reported in early studies [11,12] and here it

serves as a check on the 3-D model. The 3-D model uses

a quarter model consisting of a slice cut by two planes

intersecting long the z-axis. The comparison of the pre-

vious 2-D model and the present 3-D model results

indicates that the two produce the same flow pattern and

agree within 0.1% (relative error) in maximum velocities

calculated, verifying that the 3-D model indeed repro-

duces the asymmetric model results (see Fig. 5(a) and

(b)). Other meshes, such as whole sphere and half sphere

were also used for additional testing and the same con-

clusions were held.

When the laser is directed at the equator, however,

the flow and temperature distributions are no longer

strictly axisymmetric. This is because the sample, after

deformation, does not possess a rotational symmetry

with respect to either the x- or y-axis. However, the

fields are of four-fold symmetry with respect to the y–x-
plane and x–z-planes. This symmetry condition permits

the use of another quarter model, which is a quadrant

formed by the y–x-plane and x–z-planes, when the laser

beam is applied along the x-axis. The calculated results

of the steady-state thermal and fluid flow fields are

shown in Fig. 5(c) and (d). Inspection of the results
suggests that the flow and temperature distributions

head at the pole and equator are very similar. And even

the temperature difference and velocity are nearly the

same (with <0.1%). Thus, for 1-beam heating configu-

ration, the thermal and flow fields are not strongly af-

fected by the placement of the laser heating source, and

flow is characterized by a single recirculating loop in a

plane cutting through the x-axis. Further simulations

show that unless the deformation is large, this conclu-

sion remains true.

These simple flows are also illustrative of the under-

lying physical principles governing the Marangoni flow

in the droplet. As the droplet is heated up, the temper-

ature is higher within the laser beam coverage and de-

creases away from the heating center. The steady-state

thermal field is established eventually when the radiation

and heating are balanced. This non-uniform tempera-

ture distribution causes a change in surface tension so as

to establish a surface force gradient on the droplet. For

the case under study, the surface tension force increases

with decreasing temperature. Consequently, the higher

force pulls the fluid particles away from the low force

region and moves them along the surface from high to

low temperature region, where flow moves inward to

form a recirculating loop in compliance with the mass

continuity requirement.
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6.3.2. Two laser beams on the poles or equator

The use of two laser beams to heat the sample is also

practiced. The two possible laser beam arrangements are

such that the beams are either applied at the two poles,

which give rise to a symmetric field distribution, or at

the two opposite side of the equator. For the former, a

2-D model is adequate [12], and thus provides once

again a checkpoint against which the 3-D model is tes-

ted. Computed results confirm that the 2-D and 3-D

model predictions are indeed in perfect agreement when

the laser beams are applied at the two pole. A 3-D view

of the thermal and flow fields is presented in Fig. 6(a)

and (b). The two-dimensional, axisymmetric flow

structure is well predicted by the 3-D model, as is ex-

pected. The temperature is higher at the poles and de-

creases towards the equator. This establishes a surface

force gradient by which the fluid particles are pulled

towards the equator at low temperature from the two

poles that are at higher temperatures. This, combined
Fig. 6. Temperature distribution and internal fluid flow in an

electrostatically deformed droplet under microgravity with

heating by dual lasers: (a, b) for beams placed at north pole––

U max ¼ 10:98 cm/s and (c–f) for beams placed at the equa-

tor––U max ¼ 11:59 cm/s. Heat flux Q ¼ 1:3� 106 W/m2.
with the requirement of mass conservation, generates the

double toroidal recirculating flow loops.

To compare, two laser beams are applied symmetri-

cally on the equator. The radius of the laser beams is the

same in the two cases. Strictly speaking, surface defor-

mation precludes the use of the rotational symmetry

condition; but the 8-fold symmetry is still applicable. As

a result, only an octant is required for the calculations.

The computed results, showing the temperature and

fluid flow distributions both on the surface of and inside

the droplet, are presented in Fig. 6(c)–(f).

Comparison of the results in Fig. 6 reveals that the

flow structures and temperature distributions are similar

for both cases. Detailed analyses, however, uncovers that

the rotational flow loop is only approximately symmetric

around the axis formed by connecting two heating

sources applied at the equator, which is consistent with

the geometric constraint. Further numerical simulations

show that a rotational symmetric flow field is obtained if

a droplet of perfect sphericity is heated with the two

heating sources placed at the two opposite sides of the

equator. From Fig. 6, it is seen also that the internal

convection has a strong effect on the temperature dis-

tribution, which is suggested by the distorted isothermal

contour lines. For these two cases, the temperature dif-

ference is 28.8 and the maximum velocity is 10.978 in the

case of pole heating, which compares 37.4 and 11.592,

respectively, for the equator heating. Further simulations

show that with the same Q0 and same radius of laser

beams applied at the equator, the average temperature is

about 20 K higher than heating at the poles, but the

temperature difference and hence the maximum velocity

is roughly the same as those in Fig. 6(a) and (b).

6.3.3. Tetrahedral heating by four laser beams

Recently, there have been strong advocates in the

droplet levitation community for the use of a tetrahedral

laser beam heating arrangement as a potential means to

reduce the temperature gradient in the droplet, thereby

reducing the internal convection. In this arrangement,

four parts of the droplet surface are heated by lasers

beams that are emitted from the four corners of a tet-

rahedron whose geometric center is coincident with that

of the droplet. This design concept may be explored

using the 3-D model before expensive instrumentation is

put in place, which in essence is the usefulness of a

numerical model. Because of the tetrahedral arrange-

ment, symmetry conditions can be applied on the plane

that cuts through the two poles and the center of a laser

beam placed around the droplet. Thus a 1/3 model is

sufficient to represent the complex flow and temperature

field in the droplet. The model used 3600 8-node finite

element elements.

The calculated results are depicted in Fig. 7. Clearly,

tetrahedral heating creates a rather complex flow struc-

ture, with fluid moving from four high temperature



Fig. 7. Steady-state thermal and velocity fields in an electro-

statically deformed droplet under microgravity with tetrahe-

dral heating arrangement: U max ¼ 9:728 cm/s. Q ¼ 0:65� 106

W/m2.
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regions to the low temperature regions (see Fig. 7(a) and

(c)). The complexity of fluid motion is further revealed

by the internal flows shown in Fig. 7(b) and (d). The

four hot spots are apparently associated with the laser

heating and flows emerge from these hot spots to find

their ways to the regions where temperatures are low, as

a result of surface forces increasing with a decrease in

temperature. Again, the internal flow recirculation pro-

duce a strong effect on the temperature distribution, as is

evident in the isothermal contour plots viewed in slice

cuts (Fig. 7(a) and (c)).

Comparison of Figs. 6 and 7 exhibits that a tetra-

hedral heating arrangement, though produces a more

complex internal flow field, indeed gives a more much

uniform temperature distribution inside the droplet: a

temperature difference of 22.9 for tetrahedral heating vs.

that of 28.8 for dual laser heating. In sharp contrast with

the common perception, the maximum velocity gener-

ated by the tetrahedral heating is not reduced signifi-

cantly in accordance with the temperature reduction. In

fact, only a small reduction of velocity (11%) is ob-

served. This result, which is contradictory to what is

anticipated by 4-beam advocates, may be explained as

follows. While the temperature difference indeed is much

smaller with 4-laser beams than with 2-beams, the tem-
perature gradient along the surface is not as much dif-

ferent between the two cases, thereby resulting in a

reduction of velocity only by 11%. Detailed analyses

further show that for the 2-beam cases, the temperature

gradient between the hottest and coldest spots on the

surface is 7.334· 103, which compares with 7.143 · 103

for 4-beam lasers.

For surface tension driven flows, the Marangoni

number is often used as an indicator of flow intensity.

For electrostatically levitated droplets under consider-

ation, however, one can not use the Marangoni number

based on a single characteristic length (say, radius) to

interpret the flows resulting from different heating

arrangements for levitated droplets, though it is legiti-

mate for the same heating configuration. This is because

the length scales are different for different heating con-

figurations, as discussed in the paragraph above. A

correct use of Marangoni numbers to characterize the

flows must take into the consideration the length scale

changes for different heating arrangements.

6.3.4. Heating by six laser beams

Besides the dual and tetrahedral laser beam

arrangements, other heating placements can also be

investigated using the numerical model described above.

One of the viable arrangements would be to use a

6-beam laser heating arrangement, symmetrically placed

with respect to the center of the droplet, for the purpose

of further reducing the temperature non-uniformity and

a hope for a smaller flow velocity. One possible

arrangement is to split the laser heating source into six

laser beams, which will allow heating to be applied

equally on octahedrons of a droplet.

One such calculation is given in Fig. 8, where the

6-laser beams are arranged such that two are at the poles

and 4-beams are placed around the equator plane with

equal spacing, which are distributed at the 6 corners of

the octahedron. Compared with the 2-laser beams’ case,

the calculated results indicate that the surface tempera-

ture gradient is reduced by about 50% and so is the

internal velocity with this arrangement. This is consis-

tent with the above analysis in that a surface thermal

gradient reduction results in a decrease of the Marang-

oni flow. A detailed inspection of these flow structures,

although very complex, seems to suggest that these

complex flow structures are a result of interaction of the

Marangoni flow cells associated with each laser beams.

A summary of major results calculated for different

heating arrangements is given in Table 2. The results

should serve as a rational guide and the model would be

a useful tool for selecting conditions for levitated droplet

studies. For example, for applications demanding a low

flow condition and a more uniform temperature distri-

bution, either more beams or large beam diameter or a

combination of the two are needed. The effect of the

beam sizes and laser intensity on flow and temperature



Fig. 8. Steady-state thermal and velocity fields in an electro-

statically deformed droplet under microgravity with octahe-

dral heating arrangement: U max ¼ 5:321 cm/s. Q¼ 1:3� 106=3

W/m2.
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distributions is discussed elsewhere [11,12]. Further

calculations show that for the cases where the flow

intensity is very low because of the smaller surface

temperature gradient, the effect of convection is mini-

mized and the temperature distribution becomes similar

to that in a solid sphere, as expected. For these cases,

however, the convective flow structure remains the same

as discussed above, that is, it is determined by the

heating source arrangements.

6.4. Transient development of flow and thermal fields

For undercooling studies using the levitated droplets,

knowledge of transient flow and thermal fields when

heating is turned off is also important. The present 3-D

model, like its 2-D counterpart [12], is also capable of

describing the transient development of both 3-D fluid

flow and temperature distribution in an electrostatically

levitated droplet. Figs. 9 and 10 show the time devel-
Table 2

Effects of heat source arrangement on temperature difference and ma

Case Thigh (K) Tlow (K)

Two laser heating at two poles 2017.0 1988.2

Two laser heating on the equator 2039.8 2002.4

One laser heating on northern pole 2035.3 1979.8

One laser heating around the equator 2054.1 1999.2

Four laser heating on the tetrahedron 2015.9 1993.0

Six laser heating on the octahedron 2005.3 1997.8
opment of 3-D fluid flow and thermal fields in droplets

heated by 4- and 6-beam arrangements, respectively.

Apparently, the transient fluid flow structure evolves in

time differently for the two cases. The transient simula-

tions of axisymmetric thermal and fluid flow fields in-

duced by single and double beams were discussed in a

previous paper on 2-D models.

Inspection of Figs. 7 and 9 shows that in the case of

the 4-laser beam arrangement, the temperature field

changes very rapidly when the heating is turned off,

which causes a flow reversal near the north pole region

and a change in flow structure in the droplet. At time

t ¼ 0:28 s after the laser beams are switched off, the

surface temperature is largely smeared out due to both

convection and radiation such that the temperatures at

the north pole is reduced below everywhere, a manifes-

tation of high heat lose there. In three other heating

regions, however, the temperature remains relatively

higher. This is explained by the fact that for the same

laser beam diameter, the surface areas from which heat

loss occurs are much smaller because of a much larger

surface curvature radius in these regions. Note also that

there exists considerable thermal mixing along the azi-

muthal direction, which brings the temperature into an

axisymmetric field. The consequence of this change in

thermal fields is that one smaller toroidal loop near the

north pool is engulfed by the loop associated with the

side heating source. This phenomenon is consistent with

the underlying physics governing the surface tension

driven flows discussed in Section 6.3.2.

Turning to the time evolution of the thermal and

fluid flow fields induced by the 6-beam heating ar-

rangement, one can see that the similar phenomena are

observed in that a lower temperature occurs in the polar

regions and the temperature is smeared considerably

along the azimuthal direction. This is accompanied by

the flow change such that the complex flow structure

characterized by several recirculating regions is now

replaced by basically two large toroidal flow loops re-

circulating above and below the equatorial plane, as

shown in Fig. 10.

To further assess the dynamics of the transient ther-

mal and flow fields, information on the history of

velocity and temperature at some specific locations is

obtained. Fig. 11 shows the decay of maximum velocities
ximum velocity in an electrostatically levitated titanium droplet

Taverage (K) DT (K) Umax (cm/s) Re

2002.6 28.8 10.978 216.92

2021.1 37.4 11.592 229.05

2007.55 55.5 14.64 289.28

2026.65 54.9 14.43 285.13

2004.45 22.9 9.728 192.22

2001.55 7.5 5.321 105.14



Fig. 9. Snapshots of thermal and melt flow fields during their

decay as heating lasers are turned off: (a) temperature distri-

bution and (b) velocity field (U max ¼ 4:376 cm/s) at t ¼ 0:07 s,

and (c) thermal field and (d) velocity profile (U max ¼ 6:941

cm/s) at t ¼ 0:28 s. The initial conditions for the calculations are

given in Fig. 7.

Fig. 10. Snapshots of thermal and melt flow fields during their

decay as heating lasers are turned off: (a) temperature distri-

bution and (b) velocity field (U max ¼ 3:812 cm/s) at t ¼ 0:04 s,

and (c) thermal field and (d) velocity profile (U max ¼ 6:561

cm/s) at t ¼ 0:22 s. The initial conditions for the calculations are

given in Fig. 8.
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and the maximum and minimum temperature differences

in the droplet heated by 4- and 6-beams after heating

sources are turned off. It is seen that during the first 0.5 s

after lasers are shut off, both velocities and temperature

differences experience dramatic change and then decay

gradually afterwards. After an elapse of 3 s, the maxi-

mum velocities reach essentially the same level in the

droplet heated initially by either 4- or 6-beams. The

maximum velocity changes in accordance with the tem-

perature differences, in compliance with the basic prin-

ciple of surface tension driven flows. Examination of
these transient results along with 3-D views of flow

visualization illustrates that the time at which the

velocity and temperature spikes up (t � 0:3 s) corre-

sponds to the time when the internal flow starts to reverse

its flow pattern in certain regions, as shown in Figs. 9

and 10.

Although the temperature differences undergo drastic

changes, the temperatures at specific locations do not

necessarily do so. Typical time change in temperature

and velocity at specific locations are compared in Fig. 12

for the droplets heated by 4- and 6-beams. Compared

with Fig. 11, these results show that the temperature at

the specific point decays more smoothly, although the

maximum and minimum temperature differences vary

more drastically during the initial transient period. The
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temperature at this point decreases by about 260 K be-

low the steady temperature or 200 K below the melting

temperature. The velocity at the point where the highest

steady-state temperature is attained decays very quickly

initially and remains approximately constant afterwards.
The evolution of temperature distributions along a

line emitting from the center to a point on the droplet

surface is plotted in Fig. 13(a) and (b) for 4- and

6-beams heating arrangements, respectively. These re-

sults show that the steady-state temperature distribution
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is rather uniform and as temperature drops, the tem-

perature distribution changes more rapidly. The largest

change occurs at around t � 0:25 s. Note that for clarity

of the plots, different scales are used for the temperature

distribution at t ¼ 3 s, at which time a temperature

difference between the center and the surface is �7 K is

obtained for the 4-beam case and �5 K for the 6-beam

case.

With the data given in Table 1, one can show that for

this system the time scale for thermal diffusion is about

an order smaller than that for momentum diffusion,

which is typical for metals. This means that during the

transient process the thermal diffusion is much faster

than the momentum diffusion. This is clearly suggested

also from the results shown in Figs. 11 and 12. Further

analysis of the transient results indicates that the tran-
sient decaying behavior is very similar to the predictions

made using the axisymmetric model, which are discussed

in detail in [12]. The local flow structure and tempera-

ture distributions, however, are different during the ini-

tial transient period, as expected.
7. Concluding remarks

This paper has presented a numerical model for

steady-state and transient 3-D Marangoni convection

and heat transfer in electrostatically levitated droplets.

The numerical model development is based on the

Galerkin finite element solution of the Navier–Stokes

and energy equations. Numerical aspects for the com-

putation of surface driven flows in general curvilinear
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coordinate system have been discussed within the

framework of finite elements and differential geometry.

Results of droplet deformation by electrostatic forces

and both steady-state and transient 3-D Marangoni

flows in droplets heated by a variety of heating source

arrangements have been presented. For practical micro-

gravity conditions under which the deformation is small,

the single and double beam heating arrangements, when

placed at the poles (or the equator plane), produce ex-

actly (or approximately) axisymmetric flow profile and

temperature distribution with the axis of symmetry de-

fined by the line passing through the centers of the laser

beam and the droplet. As such a 2-D axisymmetric

model could provide a reasonably good description, and

an exact one when placed at the poles. Complex 3-D

flow structure emerges when a tetrahedral or octahedral

heating arrangement is applied. These complex flow

structures result from the interaction of melt flows

associated with each laser beam. For the case studied,

the tetrahedral heating arrangement does not seem to

produce a significant reduction in internal velocity, in

contrast to perception, while the temperature is more

uniform. This is attributed to the fact that the 2- and

4-beam arrangements result in a surface temperature

gradient of approximately the same magnitude. While

the Marangoni numbers are able to characterize the flow

for a same heating arrangement, a correct use of them

needs to factor in the different length scales associated

with different heating placements. The six-beam heating

placement produces, however, a much more significant

reduction in both velocity and temperature non-unifor-

mity. During the transient decaying, both temperature

and velocity fields evolve in a complex fashion with the

initial stage dominated by the thermal and flow mixing

on the surface of a droplet that has been heated by 4- or

6-beam lasers. The flow reversal is also observed in the

droplets during the decay, and a spike in velocity and

temperature is found at the time when the flow reversal

is taken place. The strong surface mixing quickly brings

out a surface temperature distribution of axisymmetry,

while inside the droplet the 3-D structure still persists

until much later.
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